An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition.
نویسندگان
چکیده
A bioassay-guided column chromatographic strategy was adopted in the present study to fractionate the culture extract of Photorhabdus temperata M1021 to identify potential insecticidal and antimicrobial compounds. An ethyl acetate (EtOAc) culture extract of P. temperata was assayed against Galleria mellonella larvae through intra-hemocoel injection and exhibited 100% insect mortality within 60 h. The EtOAc fraction and an isolated compound exhibited phenoloxidase (PO) inhibition of up to 60% and 63%, respectively. The compound was identified as 1,2-benzenedicarboxylic acid (phthalic acid, PA) by gas chromatography-mass spectrometry and nuclear magnetic resonance. PA exhibited insecticidal activity against G. mellonella in a dose-dependent manner, and 100% insect mortality was observed at 108 h after injection of 1 M PA. In a PO inhibition assay, 0.5 and 1 M concentrations of PA were found to inhibit PO activity by 74% and 82%, respectively; and in a melanotic nodule formation assay, nodule formation was significantly inhibited (27 and 10 nodules) by PA (0.5 and 1 M, respectively). PA was furthermore found to have substantial antioxidant activity and maximum antioxidant activity was 64.7% for 0.5 M PA as compare to control. Antibacterial activity was assessed by The MIC values ranged from 0.1 M to 0.5 M of PA. This study reports a multifunctional PA, a potential insecticidal agent, could a factor of insect mortality along with other toxins produced by P. temperata M1021.
منابع مشابه
An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition.
Photorhabdus is a virulent pathogen that kills its insect host by overcoming immune responses. The bacterium also secretes a range of antibiotics to suppress the growth of other invading microorganisms. Here we show that Photorhabdus produces a small-molecule antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene (ST) that also acts as an inhibitor of phenoloxidase (PO) in the in...
متن کاملInsecticidal Toxic Proteins Produced by Photorhabdus luminescens akhurstii, a Symbiont of Heterorhabditis indica.
We describe the isolation and characterization of an insect pathogenic bacterium from the entomopathogenic nematode Heterorhabditis indica (Karnataka strain), an isolate from the southern regions of India. The strain has been identified and characterized by phenotypic, biochemical tests and PCR-RFLP analysis of the 16S rRNA gene as Photorhabdus luminescens subsp. akhurstii. The insecticidal tox...
متن کاملChanges in immune effort of male field crickets infested with mobile parasitoid larvae.
Insect immune defenses include encapsulation and the production of lysozymes and phenoloxidase. However, the highly mobile larvae of parasitoid Ormiine flies (Ormia ochracea) can evade initial encapsulation, and instead co-opt host immune responses to form a critical respiratory funnel connecting them to outside oxygen. Here we ask how field crickets (Teleogryllus oceanicus) respond immunologic...
متن کاملMeasuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection.
During insect infection Photorhabdus luminescens emits light and expresses virulence factors, including insecticidal toxin complexes (Tcs) and an RTX-like metalloprotease (Prt). Using quantitative PCR and protein assays, we describe the expression patterns of these factors both in culture and during insect infection and compare them to the associated bacterial growth curves. In culture, light a...
متن کاملDomain Shuffling in a Sensor Protein Contributed to the Evolution of Insect Pathogenicity in Plant-Beneficial Pseudomonas protegens
Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 19 12 شماره
صفحات -
تاریخ انتشار 2014